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ABSTRACT: In this paper, we study the M-brane description of the Wilson-Polyakov sur-
faces in six-dimensional (2,0) field theory at finite temperature. We investigate the mem-
brane solution dual to a straight Wilons-Polyakov surface and compute the interaction
potential between two parallel straight strings by using AdS/CFT correspondence. Fur-
thermore we discuss the Mb5-brane solutions dual to various Wilson-Polyakov surfaces.
Finally we obtain a universal result about M5-brane solutions in generic backgrounds.
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1. Introduction

The six-dimensional (2,0) superconformal field theory (SCFT) is mysterious, but also very
interesting. From quantum field theory point of view, it has been known for many years
that there exist no non-trivial unitary superconformal field theory in the spacetime higher
than four dimension, with the six-dimensional one being the only exception. The existence
of a six-dimensional superconformal field theory was first pointed out in Nahm’s beautiful
paper [[l. The result was obtained by studying the representation of superconformal algebra
in various dimensions [[. The same issue was readdressed in [ from the point of view of
scaling invariance. The superconformal field theory in six-dimensional spacetime has (2, 0)
supersymmetries and its field content is just of a tensor multiplet which includes a two-form
B, with self-dual field strength, 4 fermions and 5 scalars. Because of the self-dual two
form field, there is no Lagrangian formulation of this quite mysterious theory [J], although
this theory is still a local interacting field theory []. After compactified on a two-torus, the
six-dimensional field theory gives us the four-dimensional N' = 4 super Yang-Mills theory
at the low energy limit [f], fJ. This fact can be used to study the properties of this very
notable four dimensional superconformal field theory, such as S-duality. In string theory,
this six-dimensional SCFT appears in several contexts. It appears when we consider 11B
string theory on a K3 surface with A-D-E type singularity [ and also appears as the
low energy effective field theory of M5-branes [, [j]. In the latter case, if we consider N
Mb5-branes on top of each other, the low energy effective field theory is the six-dimensional
An_1,(2,0) SCFT. The five scalars in this field theory describe the fluctuations of the M5-
branes in the transverse directions. Since there is no Lagrangian formulation of the theory,



people tried to study this theory from other angles. A DLCQ matrix model description
of the six-dimensional superconformal field theory has been suggested [§, fl], during the
development of the BFSS matrix theory [[L{].

There is another description of M5-branes [L]]: they can be described as solutions
of eleven dimensional supergravity, which is the low energy effective theory of M-theory.
Taking the near horizon limit of the supergravity solution gives us AdS7 x S* background
with 4-form flux filling in S*. This led Maldacena to propose the conjecture that the M-
theory on AdS; x S* is dual to the large N limit of the six dimensional superconformal
field theory [[[J]. This AdS;/CFTs correspondence is a cousin of much more well-known
AdS5/CFTj correspondence proposed in the same paper. The weak version of the above
AdSr/CFTg correspondence states that the large N limit of six-dimensional (2,0) SCFT
is dual to the eleven-dimensional supergravity on AdS; x S*. This correspondence gives us
a new way to study the six-dimensional theory. The chiral primary operators of the SCFT
and the corresponding supergravity modes were studied in [LJ]. Some correlation functions
of these local operators were computed in [[4] from AdS supergravity. These operators
were also studied by using M5-brane action in [[IF].

Non-local operators play important roles in AdS/CFT correspondence. In the
AdS5/CFT, correspondence, the Wilson loops in fundamental representation or low di-
mensional representation can be described using the fundamental strings , E] However,
it turns out that the better descriptions of the BPS Wilson loops in higher dimensional
representations are in terms of D-branes in AdS; x S° [L§—R1] due to dielectric effect [R2):
D3-branes if the Wilson loops being in symmetric representations, or D5-branes if being in
antisymmetric representations. The D-brane description of Wilson-'t Hooft operators was
discussed in [R3]. It is remarkable that the D-branes description of the BPS Wilson loops
encodes the information of string interactions.

A quite similar picture appears also in the AdS7/CFTg correspondence. Due to ex-
istence of the self-dual 2-form potential, there are strings in the field theory minimally
coupled to the 2-form potential. This allows us to define a two-dimensional non-local
operator called Wilson surface. It can be formally defined as [P4]:

Wo(X) = Tr <expi/ZB+>, (1.1)

where X is a surface in the six-dimensional spacetime. The Wilson surface in low di-
mensional representations is dual to a membrane ending on this surface [, RF]. The
Mb5-branes dual to straight and spherical half-BPS Wilson surfaces in higher dimensional
representation were found in [R§ by solving the covariant equations of motions for M5-

branes!

. Analogues to the Wilson loop case, the worldvolume of the M5-brane dual to
the Wilson surface in symmetric representation has topology AdSs x S3 and is completely
embedded in AdS7;. While the worldvolume of the M5-brane corresponding to the Wilson
surface in antisymmetric representation has the same topology but with the S3 part in

5%, The expectation value of the Wilson surfaces in higher dimensional representation

!Similar M5-brane configurations for straight Wilson surface are discussed in [@] in Pasti-Sorokin-Tonin
(PST) formalism [@, @] as well. The self-dual string soliton in AdS4 x S” spacetime is discussed in @, @]



was computed in [R6] from the action of M5-brane, without including the subtle boundary
terms. The operator product expansion of Wilson surface operators is computed using
M-theory branes in [[[4, B].

The Wilson loop or Wilson surface operators are not just probes to test AdS/CFT
correspondence and probe the strings or membranes dynamics. They are physical gauge
invariant observables to characterize the underlying theory. For example, in pure non-
Abelian gauge theory at finite temperature, the Wilson loop along temporal path, the
so-called Wilson-Polyakov loop, defined by

P(F) = %ﬂ <7> exp <z /05 Ao(f)dt>> , (1.2)

is the order parameter, characterizing the phase of the theory. Here § = 1/T is the inverse
temperature and P denotes the path ordering. Moreover by considering the correlator
of two parallel Wilson-Polyakov loops one can read out the static potential between two
quarks.

The AdS5/CFTy correspondence has a finite temperature extension. At finite temper-
ature, The spacetime where the four-dimensional field theory lives can be either S3 x S!
or R? x S'. Now the time direction becomes a circle with the period being the inverse
of the temperature. According to the AdS/CFT correspondence, this finite temperature
theory is dual to type IIB string theory on the background which is the product of a
Schwarzschild black hole in AdSs space? and a 5-sphere. This background comes from the
near-horizon limit of non-extremal black 3-brane solution of the type II1B supergravity. The
Hawking temperature of the black hole corresponds to the temperature of the field theory.
In [B2, B3], Witten studied the thermodynamics of this theory on S® x S'. He showed
that there is confinement-deconfinement phase transition in this theory. This transition is
dual to the Hawking-Page transition [B4] in the gravity side. In this case, the AdS/CFT
correspondence tells us that the Wilson-Polyakov loops in fundamental representation can
be described by fundamental strings in Sch.-AdSs space [Bg]. Using this description the
interaction potential between two heavy quarks at finite temperature was studied. The
field theory is on R? x S! in [BJ], so there is no confinement-deconfinement phase transi-
tion. One may expect that for the Wilson-Polyakov loop in higher representation, D-branes
rather than fundamental string are more appropriate. In [Bg], the D5-brane description of
the Wilson-Polyakov loops was proposed. It was also showed in that paper that there is
no D3-brane description. In [B7], the correlation function of two Wilson-Polyakov loops,
one in fundamental representation and the other one in the anti-symmetric representation,
was computed.

Similarly the six-dimensional (2,0) field theory at finite temperature is dual to M-
theory on Sch.-AdS7 x S*. This background can come from the the near horizon limit of
non-extermal black M5-brane solution. The Hawking temperature in the gravity side is
still corresponding to the temperature in the field theory side. The gravity dual of this
finite temperature theory was used in [BJ] to study the nonsupersymmtric pure Yang-Mills
theory in four dimensions.

2We denote this by Sch.-AdSs.



In this paper, we would like to study the counterpart of the Wilson-Polyakov loop in
finite temperature six-dimensional (2,0) field theory in R® x S! using the M-theory branes.
Like the Wilson surface operator, this counterpart should be a two-dimensional non-local
operator. We also expect that it extends in one spatial direction and one temporal direction.
We can still formally define this operator using eq. ([[.]), while now ¥ should be a surface
on which the induced metric has signature (1,1). We call this operator Wilson-Polyakov
surface.

We propose that when this operator is in lower dimensional representations it should
be described by M2-branes ending on this surface. We first find the membrane solution cor-
responding to a straight Wilson-Polyakov surface. We also compute the potential between
two static parallel self-dual strings with infinite length. This involves two Wilosn-Polyakov
surfaces extending in the same two directions of the spacetime. The interaction poten-
tial between these two strings can be obtained from the correlation function of these two
Wilson-Polyakov surfaces. There are two classes of membrane configurations ending on
these two Wilson-Polyakov surfaces: one is of two separated membranes, each of which
ending on one Wilson-Polyakov surface; the other one is a U-shape membrane connecting
these two Wilson-Polyakov surfaces. The interaction potential is determined by the lowest
energy configuration. Denoting the distance between two strings as L and the temperature
as T, we find that when LT < 1, the potential per length goes as 1/L?, similar to the
results at zero temperature [@], and when LT > 1, the interaction potential vanish since
it is screened by the thermal effects.

We also study the Mb5-brane configurations which should be dual to the Wilson-
Polyakov surfaces in higher dimensional representations. Similar to the discussions at
zero temperature, two classes of M5-branes are studied. The first class of the M5-brane
is completely embedded in Sch.-AdS7, while the second class of M5-brane has a S® part
embedded in S*. In the first case, we get a very complicated differential equation. The
existence of the solution of this equation is discussed. While in the second case, we obtain
a class of explicit solutions. Among these solutions, we indicate a special one which should
be dual to the Wilson-Polyakov surface in the anti-symmetric representation.

Furthermore, inspired by the M5-brane solution dual to the Wilson-Polyakov surface
in antisymmetric representation and the similar solution at zero temperature in [Rg], we
consider M-theory on M7 x S* which can be dual to a quite generic field theory at the
boundary of M. We obtain a universal result on M5-brane solutions in M7 x S*. Starting
with a membrane solution whose worldvolume X3 is completely embedded in M7, we find
that there is always an Mb5-brane solution whose topology is ¥3 x S with the same X3 in
AdS7 and S® in S*. The similar universal result for D5-brane solutions corresponding to
Wilson loops in anti-symmetric representation was discussed in [B§].

The investigation we make here may help us to get a better understanding of the six-
dimensional field theory at finite temperature, the dynamics of the M-theory branes, and
even the dynamics of M-theory itself. For a very good review of the dynamics of M-theory
branes, see [B]].

The other part of this paper is organized as the following: In section P, we will discuss
the M2-brane description of the Wilson-Polykov surface. Firstly in subsection P.1], the



M2-brane dual to a straight Wilson-Polykov surface is discussed, then in subsection P.2,
the interaction between two self-dual strings is studied using M2-brane description. Our
discussions on the M5-brane description is put in section f]. In subsection B.1], we investigate
the M5-brane which is completely embedded in Sch.-AdS7, in subsection B.9, we discuss
the M5-brane solution with an S part in S*, and in subsection .3, we present the universal
result we find. The last section is devoted to conclusion and discussions.

2. Membrane description

As mentioned before, the six-dimensional (2, 0)-field theory at finite temperature is believed
to be dual to the M-theory on Sch.-AdS7 x S*. We also have a 4-form flux which fills in
the 4-sphere. The metric of the background is

R? < dy? >
ds? = — — f(y)dt®* + da? ) + —dQ , 2.1
2 \f(y) Z ! 21)
with
fly) =1-€%° (22)
Here df)? is the metric of unit 4-sphere. If (;,i = 1,---,4, are the angular coordinates of

the 4-sphere, then d2? can be written as:
dQ% = d¢? + sin® (1d¢3 + sin® ¢ sin? (od23 + sin? ¢ sin? (3 sin? (2d(3. (2.3)

The background 4-form field strength is

3
Hy = % sin® ¢; sin? Co sin C3d¢1 A dCa A dCs A dCa. (2.4)

This background can be obtained from the near-horizon limit of non-extremal black M5-
brane solution of the 11-dimensional supergravity. From the AdS/CFT correspondence,
the relation among R, 11-dimensional Plank length [, and the parameter IV is

R = (87N)3l,, (2.5)

In the large N limit, this six-dimensional field theory at finite temperature should be dual
to the 11-dimensional supergravity in this background. In the metric (2.1)), the boundary
field theory is defined at the conformal infinity where y = 0, and the coordinates on the
boundary are t,z;,i = 1,---,5. The topology of the boundary is R® x S with S' in the
time direction.

Using the standard method, we can get the Hawking temperature Ty of the black hole:

3
Ty = . (2.6)

This Hawking temperature corresponds to the temperature of the field theory.

In this paper, we will use AdS/CFT correspondence to study the Wilson-Polyakov
surface operators in the six-dimensional field theory at finite temperature. In this section,
we will study the M2-brane description of the Wilson-Polyakov surface operators.



The bosonic part of the membrane action is® [[i(]

Sara = T ( [ #ev=adg. - | Q3> | (27)

where g, is the induced metric on the membrane, 75 is the tension of M2-brane:

1

2= G (2.8)

and Cj is the pullback of the bulk 3-form gauge potential to the worldvolume of the
membrane?. The membrane equations of motions are:

(2.9)
Here H is the pullback of the background four-form field strength.

2.1 Membrane description of Wilson-Polyakov surface

In this subsection, we consider a straight Wilson-Polyakov surface in six-dimensional (2, 0)
theory at finite temperature. We let it extend in the ¢ and zo directions. The dual
membrane configuration is always ending on this Wilson-Polyakov surface. This means
that two worldvolume coordinates of membrane could be identified with ¢ and s, while
the other coordinate should extend into the bulk.

The simplest membrane configuration is to let it extend only along y direction. We can
easily check that this membrane configuration is the solutions of the membrane equations
of motion. The only non-trivial equation is the one with index M = y, which can be
checked by straightforward calculations. The needed Christoffel symbol of the Sch.-AdSr
space is listed in appendix.

The membrane should be stretched between the boundary (y = 0) and the horizon
(y = yo = 1/¢€) because the non-extremal N black M5-branes should be located at the
horizon. Arguments supporting similar result in the Sch.- AdSs case can be found in [[], B
Some of these arguments can be applied here. The action of this membrane is

Yo
S = ThR*Tp X, / d—g
o Y

2N Yo q
_ _TOXQ/ . (2.10)
T 0

where Ty, Xo are the lengths of the ¢, xo direction, and in the second line of the above
equation, Ty R* = 2N/ is used. By introduce a cutoff y = 6 near y = 0, we get,

N 11
S = —?T0X2<% - §>. (2.11)

30ur notation is: the indices from the beginning(middle) of the alphabet refer to the frame (coordinate)
indices, and the underlined indices refer to the target space ones.

“In this paper, we use the underline indices to denote the target space indices. We also use the underline
to denote the pullback of bulk gauge potential or field strength to the worldvolume of M2-brane or M5-brane.
We hope that this will not produce confusion.



2.2 The potential between two static strings

It would be interesting to study the potential between two static parallel infinitely-long
strings in this six-dimensional finite-temperature field theory. We let these strings extend
along the xo direction and put them at z; = L/2 and 2y = —L/2. To compute this
potential, we need to consider two Wilson-Polyakov surfaces. These surfaces should extend
along the ¢t and x5 direction and be put at 1 = L/2 and o1 = —L/2, respectively. °

There are two classes of membrane configurations ending on these two Wilson-Polyakov
surfaces. The first is two separated parallel membranes, with each membrane ending on one
of the two Wilson-Polyakov surfaces and extending along y direction to the horizon. These
membranes and their actions have been studied in the last subsection. The second is a
U-shape membrane connecting these two Wilson-Polyakov surfaces. Now we will study this
membrane solution. In the large IV limit, the potential between these two static strings will
be determined by the lowest energy membrane configuration among the possible classical
solutions.

The connected membrane solution will only extend in x4, xs, t, y directions of the back-
ground geometry. We choose the coordinates of the worldvolume of the corresponding
membrane to be x1,x2,t, and y is a function of z; only. Then boundary condition is:
y(—=L/2) = y(L/2) = 0.

The induced metric on this membrane is

R2 y/2
dsi 4 = 7 (—fdt2 + dz3 + <1 + 7)@%) , (2.12)

where 3’ is dy/dx;. Then the action of this membrane is,

3 /f _|_ y/2
S = T2 dtdl’ldl‘Q\/— = T2R TOX2 Td$1, (2.13)

where Ty, X5 are the lengths of the t, zo direction.

We can consider the above action as the one of an imaginary particle with z; plays
the role of time. Since the Lagrangian does not depend on z; explicitly, the Hamiltonian
in the x1 direction is a constant of motion. So

= const. (2.14)

According to the symmetries of this system, at 1 = 0, y should reach its maximum value
Ym- S0 at this point, ' = 0. Note that we only consider the membrane solution out of the
horizon, so y,, < yg. Using the above equation, we have

f(y) _ flm) f(ym)7 (2.15)

BT 9% v Ym) Yin

50 6,6 6 6
p_ (=) (ym —1°)
Yo (1 — ebyf)

5We choose the same scalar coupling for these two Wilson-Polyakov surfaces, in another word, we choose

(2.16)

the same point at S* for them.
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Figure 1: The functional relation of LTy and a. One can see that for L < L.y, there are two
connected membrane solutions, while for L > L.y, there are no connected membrane solutions.

We can solve this equation to get:

N 1" s # de when 1 > 0 (2.17)
1= '
fym %z?’d@ when z1 < 0.

Because of the boundary conditions, we have the following relations between y,, and L:

Ym 1— €6y
=2 o 3dz. 2.1
/ \/ T 020y = ZG)Z dz (2.18)

By introducing a = €y.,,, L can be written as:

2
a\/l T dz (2.19)

\/1—26 (1 —abz6)

The above result can be expressed by the hypergeometric function as the following:

2v/7(2/3)a 127
L:W\/l 2F1< 3 6) (2.20)

From this, we can also get the dimensionless combination LT as a function of a:

3I'(2/3)a 127 b
LTy = ————/1 F 2.21
o= /ar(1/6) @2k1( 3359 (221)
This function is plotted in figure [l
One can see that L has a maximal value Limmax.. For each L less than Lmax., there are
two corresponding a’s: a1(L) and ag(L) with a;(L) < as(L). So there are two connected
membrane configurations. For L > Lmax., there are no connected membrane solutions.
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Figure 2: f = SFOIML?/(Tp X2) as a function of a. One can see that for a < a., the renormalized
action is negative; while for a > a., the renormalized action is positive.

For the connected membrane solution, the action is:

Ym 1 6 1— 6,,6
SO (q) = 2T, R3Ty X /0 W/%dy. (2.22)

As in [13, B§], We should subtract the action of two straight membranes stretched between
the boundary (y = 0) and the horizon (y = yo = 1/€).5 These membranes extend in
the y,t,zo directions and are just the disconnected membrane configuration. After the
subtraction, the action is

Ym 1 1 _ 6 Yo
SO (a) = 2T, R*Ty X ( / L [yl =) o / dy)
4NTOX2 2 / 1-—- CLGZG 1 1 1
= T2 - =\ T d 1—= ).
™ [a2 o \Z3V 1—-26 23 7ty a?

_ 2NTHX, VaT(=1/3) 1 11
= <1+ 3420(1/6) 2F1<_§’_§’6’“2>> (2:23)

The dimensionless combination S$en-L?/(TpX2) is the following function of a:

9O L2 /(Ty Xy) = 8gN(LT 2 ( +\F§F((11/g’) 2F1<—%,—%,%,a2>>, (2.24)

where (LTy)? is given in eq. (2.2]). This function is plotted in figure fJ.

After eliminating a, we can obtain the functional relation between these two dimen-

sionless combinations: S$R-L2/(TyX3) and LTy. This functional relation is plotted in

figure f.

SThis action represents the masses of these two strings.
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Figure 3: The functional relation between f = S¢on-(a)L?/(TyX2) and LTx. The upper dashed
curve is the one corresponding to the membrane configuration with the smaller a, i. e., as; The
lower solid-dashed curve is the one corresponding to the membrane configuration with the smaller
a, i. e., a;. For L < L., the solid curve gives us VL?/X, as a function of LTy, where V is
the interaction potential per length between these two strings, while for L > L., the interaction
potential is zero. We note that this result is at the leading order of large N expansion.

As to the disconnected membrane configuration, this solution always exists for any L.
Due to our substraction prescription, the renormalized action vanishes:

OB (4) = 0, (2.25)

One can see from figure f that there is a value a. ~ 0.692, such that S$8(a.) = 0.

One can also see that

< 0, when a < ag;
Sren ’ “ 2.26
ren; (@) > 0, when a > a. ( )
We can also find from figure [] that for any L < Lmax., a2(L) > a.
So for any given L < Lmax., among the renormalized action of three possible mem-
brane configurations, SS9 (a; (L)), SO (ag(L)), and SS9 (L), the smallest one is”

con. < .
{ Sten:(ai1(L)), when a < ag; (2.97)

sdis. (1) = 0, when a > a.

While for any L > Lmax., the only possible membrane configuration is the disconnected
one whose renormalized action vanishes.

So at the leading order of large N expansion, the interaction potential per length
between two infinite strings is:

v _ { ren. (a1(L))/(X2Tp), for L < Le;

— 2.2
X9 0 for L > L. (2.28)

"Figure E tells us that for any L < Lumax, we always have SSOR" (a1(L)) < S%%l"(az (L)).

— 10 —



Here L, (~ 0.278/T}y) is the value of L such that a;(L.) = a.. One can see from figure ] and
figure E that L. < Lmax.. For L < L., the functional relation between the dimensionless
combination VL?/X, and LTy is given by the solid curve in figure | Physically, we can
take L. as the screening length. When L < L., the two strings can interact with each
other. And when L > L., the two strings are screened by the thermal fluctuation and
de-associate.

Now we further study the potential in the case of LTy < 1. In this case, we have
a < 1. Under this condition, we can expand eq. (R.21) in powers of a,

_3c 3 6 15 1y
LTy = Wa( 4%~ 7og? + , (2.29)
where
T(2
= VTIG) (2.30)
I'(3)
Then we can get
3 309
=t(1+—=t0 + —t2 ... 2.31
a=tl+ g+ agt (2:31)
where t = LTy /(3c).
From this result and the expansion of eq. (R.24) in powers of a, we get
V. N/ 83 8r 3275
— = —— 4+ —(LTp)? - ——(LTy) +--- ). 2.32
X, L2<  F o W)~ gygges (ETw)” + > (2:32)
Take Ty — 0 in above equation, we arrive at the zero temperature result in [[L7:
V/Xy = Sﬁr(%)?’N (2.33)
TP |

which is always lower than the finite temperature results.

In summary, the asymptotic behavior of our results at finite temperature is: when
L < 1/Ty, V/X; goes like 1/L? similar to what happens at zero temperature; while when
L > 1/Ty, the potential is zero since the interaction is screened by the finite temperature
effects.

From the above discussion, one can also see that V L2/ X3 depends on Ty only through
the combination Ty L, this is due to the underlying conformal symmetry although this
symmetry is broken at finite temperature.

3. Mb5-brane description

In this section, we turn to study the M5-brane description of the straight Wilson-Polyakov
surface operator. We expect that this description should be a better one when the Wilson-
Polyakov surface is in higher dimensional representations, like what happens in the zero-

(]

temperature case [R(].

— 11 —



Let us first give a brief review of the M5-brane covariant equations of motion in an
eleven-dimensional curved spacetime [[12]. We are only interested in the bosonic compo-
nents of the equations, which include the scalar equation and the tensor equation. The
scalar equation takes the form

Q 1 1
Gm”Vmﬁﬁ - TEml me _|H£m1"'m6 + THgmlm2m3Hm4m5m6 ng (31)
V=9 6! (31

and the tensor equation is of the form
Gy Hypg = Q7HAY — 2(mY + Ym) +mYm),,. (3.2)

The various quantities in the above equations of motion are introduced as follows.
There exist a self-dual 3-form field strength h,,y,, on the M5-brane worldvolume, from
which, one can define

k" = hypgh™, (3.3)

2
Q=1- gTrk;2, (3.4)
my = 6,7 — 2k, (3.5)
Hypp = 4Q7 (1 4 2k),%hgnp (3.6)

Note that A,y is self-dual with respect to worldvolume metric but not H,,,,,, which instead
satisfies a nonlinearly self-dual condition and also the Bianchi identity

dHs = —H, (3.7)

where H, is the pull-back of the target space 4-form flux. The induced metric is simply

9mn = 5%5%77@ (38)
where
£ = O 2L, (3.9)

Here 2™ is the target spacetime coordinate, which is a function of worldvolume coordinate
¢ through embedding, and Ef, is the component of target space vielbein. However, it is
not gmn but instead another tensor

2
G = (1 + §k2>gm” — 4F™" (3.10)
which appear in (B.1). And the covariant derivative in (B.1]) means

mn%p n=’ab

Vs = OmEs —Th,,E5 + EREpws, (3.11)

where I'h,,, is the Christoffel symbol with respect to the induced worldvolume metric and
wib is the spin connection of the background spacetime. Also one has

PC = 55— ETEL. (3.12)

- 12 —



Moreover, there is a 4-form field strength H, and its Hodge dual 7-form field

strength H,

10y

1
Hy = dCs
1
H; = dCg + 503 N Hy (3.13)

The frame indices on H4 and H7 in the scalar and the tensor equations have been converted
to worldvolume indices with factors of &;,. From them, we can define

Yo = [4* H —2(m* H +*xHm) +mx Hm|my,, (3.14)

where

mn 1 mnpqrs
*ﬁ = r\/__gﬁ Pq ﬁpqrs' (315)

These two quantities appear in the tensor equation of motion.

These equations of motion can be obtained from the non-chiral action 43, 4] or the
PST (Pasti-Sorokin-Tonin) action [, Pg]. In the non-chiral action, a nonlinear self-dual
condition for Hj3 should be put by hand instead of coming from the variation of the action.
This is similar to what happens in the case of ten-dimensional type IIB supergravity where
the self-dual condition for 5-form field strength is put by hand. In the PST action, an
auxiliary field is introduced to deal with the self-duality of Hs. We postpone a brief
introduction of the PST action to the subsection B.d, since only there this action is needed.

3.1 M5-brane configuration in Sch.-AdS7?

First we consider the Mb5-brane solution which is completely embedded in the Sch.-AdS7
part of the background metric. In this case, we expect that due to the membrane interaction
in the presence of background 4-form flux, the membrane will polarize to a M5-brane by
blowing up an S2 in the transverse direction. This is really the case for the Wilson surface
operators discussed in [P]. Now we choose the coordinates of Sch.-AdS7 such that the
metric takes the following form:

2 R’ 2 dy? 2 2 2 102
ds® = —| — fdt —i—T—Fdaj +dr* +1r°dQ3 ). (3.16)
Yy
In the case of the straight Wilson-Polyakov surface, let the worldvolume coordinates
of M5-brane be §;, i=0,---,5, and the embedding be
60 =1, gl =1, &2 =Y, = g(y)7 (317)
63 = Q, 64 = /87 65 =7 (318)

where «, 3,7 are the angular coordinates of S3. This embedding is reasonable from the
experience in the study of the Wilson surface operators. The induced metric is then

R? )
dsfid = y(—fdfg +d& + (f 71+ g7)dE + g7d03) (3.19)

R? R2¢?
= ?(—falt2 +da? + (7L + gP)dr?) + 7(da2 + sin? adf? + sin? a sin? Bd~?)
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where the prime denotes the derivative with respect to y. Without causing confusion, we
simply let ¢, x,y, a, 3,7 be the coordinates of the M5-brane worldvolume.

There is a self-dual 3-form field strength in the M5-brane worldvolume. Let us assume
it to be

hy = 5 (14 xipq)Vdet Gda A dj A dy (3.20)

where a could be a function of y and det G is the determinant of the metric of S3. In our

case, we have

3
hs = a4 (g) (¢ sin® acsin Bda A dB A dy + /1 + fg'2dt A dx A dy). (3.21)

Then we can calculate the relevant quantities k™", G™" etc...It turns out that the
physical 3-form field strength is

3

/1 2 3

H; =2a B idt Adx Ady + I__sin? asin Bda A\ dp N dry (3.22)
Y 1+ a2 1—a?

Since there is no pull-back of bulk 4-form field strength on the M5-brane worldvolume,
we have dH3 = 0, which gives the constraint

a 93

— == tant 3.23
a2 constan (3.23)

The equation of motion on the tensor H,,),, in this case, is
GV Hppg = 0. (3.24)

Here V,, is the covariant derivative with respect to the induced metric. We list the detailed

Levi-Civita connection in appendix. It is somehow surprising that the tensor equation give

the same constraint (B.23). It is remarkable that (B.29) is independent of the form of f.
For the scalar equation of motion, it is more involved. In our case, we have

5?2?\/77 55%:?7 55=%7 Ey&:gg’,
532@7 522M7 gg:Rgsin—asin[37 (3.25)
Y Y Y
where we have set the veilbein of AdS; part of the target spacetime as
6o — g\/fdt, it — gdx, 6 — %dy, 6 = gdr,
64 = %da, 65 = @dﬂ, go — Rrsmasin Sinyo‘ Sinf o, (3.26)

The corresponding spin connection could be found in appendix. The straightforward cal-
culation shows that
G""'Vp&r =0, except ¢ = 2 or 3. (3.27)
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The nontrivial components come from ¢ = 2 or 3. The right hand side of the scalar equation
of motion consists of the matrix Py = dg — £"Ey, which has nonvanishing components

fgl2/2 - \/?giQ
Pe=| T T (3.28)

a 1
C1+fg? 1+fg7
where a, c take values 2, 3.
For the background flux, we have a dual 7-form field strength in AdS7 part,

Hopp..6 = % (3.29)

Note that our convention is a little different from the literature by a factor 2 since we have

rescaled the radius of AdS7. On the right hand side of the scalar equation, only 7-form

field strength contributes since the M5-brane worldvolume is embedded simply into AdS7
and there is no induced 4-form field strength on it.

It turns out that the nontrivial components ¢ = 2 and 3 of the scalar equation of

motion give the same constraint:

_ 4 / i
M) e {2 (e )}
+3(1 — a2)2ﬁ <fg’ + %) (3.30)

When one takes f = 1 and g = x~ 'y, the above equation is just the one for the Wilson
surface operator in the symmetric representation, which was discussed in [26]. Generically
even when one takes f = 1, the equation (B.3() is quite hard to solve analytically. When one
consider the Sch.-AdS7 with a nonconstant f, even the existence of the solution is not an
easy problem. In [B], it was showed that there are no D3-brane solutions with finite total
action dual to Wilson-Polyakov loops in four dimensional N' = 4 super Yang-Mills theory
at finite temperature. In the case at hand, we can not directly use their argument since the
total action of M5-brane is still not well-defined due to the subtlety of the boundary terms
and the conformal anomalies [i§]. Here we would like to just discuss the existence of the
solution of the above differential equation. Let us impose the following initial condition:

9(0) = ¢, g (0) = co. (3.31)

For the case of ¢; = 0, we have mentioned that this initial value problem has a solution
g = k 1y when € = 0. This will guarantee that for small enough (positive) €, the above
initial value problem will have a solution in a finite interval [0,yo(€)]. In another word,
when the temperature is low enough, the M5-brane solution dual to Wilson surface in sym-
metric representation in zero-temperature theory will only be deformed, not be destroyed.

However, for the case of ¢; # 0, we find that this initial value problem has no solutions.®

8We would like to thank Antonio Ambrosetti and Jiayu Li for discussions and helps on the study of this
ordinary differential equation.
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3.2 M5-brane configuration in Sch.-AdS; x S*

Now let us consider another possibility. We consider the M5-brane solution with topology
Y5 x 53, Now X3 will be in Sch.-AdS; and S® in S*. Let the worldvolume coordinates of
Mb5-branes be &, ¢ = 0,---5 and the embedding be

60 :t7 51::177 52:y7 T:g(y)
=0, 4=0G, &= a=¢ (3.32)

where (; are the angular coordinates of S*. Here we let (i be fixed at a constant (°. The
induced metric is

R? _
dsmd =7 —(—fdt* + dz* + (f 1 + ¢?)dy?)

R2 :n2 ~0
+%C(d<§ + sin? Cod¢2 + sin® (o sin® C3dC?). (3.33)

In this case, we take the self-dual 3-form field strength on the M5-brane worldvolume
to be

1 /1 /2 nd o
hs = §aR3 <;_7fgdt Adx A dy + 8< sin? (o sin (3dCo A d(3 A dC4> (3.34)

where a could be a function of y.
Similar to the above cases, we can get k™", k? = —a and Q = 1—a*. And the physical
3-form is

(1+ a2)y3 81— a?)

The condition that dH3 = 0 requires that a is a constant.

2 :q3 ~0
Hs = 2aR? <7\’+fgdt Adz A dy + Lﬂ sin? Cy sin C3dCa A dCs A d§4>. (3.35)

It is straightforward to check if it is possible and under what condition if possible that
the above ansatz satisfy the equations of motion. Since « is a constant, the tensor equation
is satisfied. And from the scalar equation, for the trivial embedding in AdS7 r = constant
and the nontrivial embedding in S4, the discussion is parallel to the one in [B§], we get

_ £1+sin(?

—c (3.36)

As for the nontrivial embedding in Sch.-AdS” part, it is somehow interesting. Firstly note
that the R.H.S of scalar equation is always vanishing in this case due to the pull-back of
the 4-form or dual 7-form field strength is zero. At the end, we have the following equation:

3f9 1 yf'y P A
1+fg/2_(1+fg/2)2< 2 <2+fg>+fyg>—0, (3.37)

which can be cast into the form
f’g’
2f

L2 (24 fg?) - ig'(l + fg*) =o0. (3.38)
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Obviously when g is a constant, which means that the embedding in AdS7 is trivial, the
above equation is satisfied, no matter what f is. This means that in this case we always
have a Mb5-solution once (B.3d) holds, just as we expected. We propose here that the
solution with ¢ = 0 should be dual to a straight Wilson-Polyakov surface operator in
higher dimensional antisymmetric representation.

Certainly it would be interesting to solve eq. (B.3§). It looks simpler than the one for
the symmetric case, but still hard to solve. For example, let f = 1, which reduce to the
background without the Schwarzschild blackhole. The equation is reduced to

3
f— gg’(l +4¢?%) =0. (3.39)

It could be solved exactly:

S VL3 YR ! 1++/3
9= 1 ((3 3F (5.5

2y/1 — c2yb
4 2¥3E (5, LT ﬁ) - N D)
2v2 V3+1-— ) y?

where ¢y and c¢; are two integral constants with ¢y being non-negative, 3 is defined as

\/§—1+c(2)/3y2
\/3—1—1—0(2)/33127

(B = arccos (3.41)

and F and FE are elliptic integrals of the first and second kind, respectively. In this solution
y can only take the value between 0 and ¢, 13, Obviously g being a constant is a trivial
embedding. And the special one with ¢ = 0 corresponds to the Wilson surface operator in
anti-symmetric representation. However it is remarkable that for the pure AdS7 x S* case,
there actually exist a two-parameter class of M5-brane configuration, characterized by the
integral constant cg, ¢;. The one with g being constant is the one with half supersymmetries.
However, with f not being a constant, the equation (B.3§) is hard to solve.

The key point in the above discussion is that the embeddings in AdS; and S* are

independent.

3.3 A universal result

As a generalization of the M5-brane solutions corresponding to Wilson(-Polyakov) surfaces
in antisymmetric representation found in [Rg] and the previous subsection, we will prove a
universal result on a class of M5-brane solutions in this subsection. We consider M-theory
on M7 x S* with four form fluxes filling in S* We assume that this background is the
solution of the eleven dimensional supegravity and a good background of M-theory. If M-
theory on this background is dual to a field theory on the boundary of M7, we expect this
universal result is useful to study the Wilson(-Polyakov) surface operators in the field theory
on the boundary. We need not to require that this background has any supersymmetries.

AdS7 and Sch.-AdS7 are two special examples of Mr.
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The background metric on M7 x S? is

2
sy w1 = dsiyp, + RI (d¢3 + sin® G d¢3 + sin? ¢ sin® (ad23 + sin? (7 sin? (3 sin® (3d(3) -
(3.42)
We assume that there is a membrane solution in this background and the worldvolume
of this membrane, Y3, is completely embedded in M7 part of the background geometry.
Locally we can always choose the coordinates of the worldvolume such that the induced
metric takes the following diagonal form:

ds3, = geoeo d€0dEo + Geye, dG1dEr + geoe, déadéo. (3.43)

This worldvolume is a three-dimensional submanifold of M7 with minimal volume.
Now, we plan to show that from this membrane solution, we can obtained a M5-brane
solution whose worldvolume has topology Y5 x S3 with the same X3 in M7 and S3 in S%.
Since here My is quite generic, it is not easy to search for the M5-brane solution using
the covariant M5-brane equations of motion. So in our discussions here we will use the
PST (Pasti-Sorokin-Tonin) action [§, RJ| of the M5-brane as in [R7]. The bosonic part of
the PST action is the following;:

SpsT = Ts/d% <\/_det(gmn + iHpp) — T_gﬁm"Hmn> —1T5 / Zg, (3.44)

where 1
Zg =Cg — §Q3 N Hs, (3.45)
and 1
Ty = ——— 3.46
5 (271')5[]6) ) ( )
is the tension of the M5-brane. In the above action,
H™ — (xH)"™" Py, (3.47)
H™ = H™" Py, (3.48)
H,pp is the 3-form field strength in the worldvolume of the M5-brane:
H3 =dA; — Cs, (3.49)
and v, is defined by introducing an auxiliary field b:
Opb
vy = b (3.50)

VG0, 00,b

This auxiliary scalar field b can be an arbitrary scalar with nonzero gradient. We have
made the choice that the gradient of b is spacelike. The equation of motion of the auxiliary
field b is not independent. It can be obtained as a consequence of the equation of motion of
the 2-form gauge potential, which takes the following form after appropriate gauge fixing:

Hon = Vin, (3.51)
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where

2 5\/ det gmn + ZHmn)
Vin = — (3.52)
\ /_g 5Hmn

The relation (B-5])) can be understood as a generalized non-linear self-dual condition.

The ansatz of our M5-brane solution is the following: as mentioned before, we take
the 33 part of the worldvolume to be the same as the worldvolume of the above membrane
solution. The coordinates of this part are still chosen to be &g, &1,&. As to the 53 part,
we choose the worldvolume coordinates to be

=0, &=3@G, &=, (3.53)

and we let (; to be fixed at ¢°. We also make the following ansatz for dAs:

3
dAy = %a sin? ¢y sin C3dCa A dCz A dCy, (3.54)

here a is a constant. We choose the background three form gauge potential to be

R3
C3 = ?(3 cos (1 — cos® (1) sin? (y sin (3dCa A d3 A dCy. (3.55)
SO \
R
Cy = §(3 cos (Y — cos? ¢) sin? ¢y sin C3dCa A dCs A dly. (3.56)
From now on, we will define d(¢%) as
d(¢%) = 3cos¢® — cos? ¢°, (3.57)
then
R3 0
Hjs = 3 ( (C )) sin? (o sin (3d(o A d(3 N d(y. (358)
The hodge dual of Hj is
\/—detgs,(a —d(¢°
«H = © 9?335‘20 () g A dey A d. (3.59)
sin

We choose the auxiliary scalar field b to be &, then the only nonzero component of v is
v82 = 1/¢%&. So the only nonzero independent compoent of H,y,,, is

2 d(c”)
Heogy = 4/ —detgs, grel ) Smg o (3.60)

Then the first term of the PST action is:

T5/d6 \/—det(g +iH) = £/ —detgs,

xsin? Gosin Gy /sin o+ (@ — d(C0))%. (361)
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It is easy to see that the second and the third terms of the PST action vanish for our
ansatz. So the PST action for our ansatz is:

ng / d%¢\/—detgs, sin? (o sin (3 \/ sin® ¢y + (a — d(¢9))2. (3.62)

SpsT =

We need to find the value of ¢° such that the action take the minimal value. Define

x = cos (°, (3.63)
and
f=sin%¢+ (a —d(¢°)? = (1 —2?)® + (a — 3z + 2%)2. (3.64)
From % =0, we get z = a/2.° Then
R’ 020 i 2~
H = 'y cos ¢ sin” ¢ sin” (g sin (3d(s A d(3 A d(y. (3.65)

Now the action of M5-brane equal to the volume of X3 times a constant. Then X3 should
be a 3-dimensional submanifold with minimal volume. It is guaranteed by the fact that
Y3 is the worldvolume of a M2-brane whose configuration is the solution of the membrane
equations of motion. So our ansatz does satisfy the M5-brane equations of motion when a
and (0 satisfy

a

cos (¥ = 5 (3.66)

Using eqs. (B:39) and (B36), one can find that the S* part of Hs of the M5-brane
solution in the previous subsection is the same as the obtained Hj in this section. This
show that that M5-brane solution is a special case of the universal result of this section.!?
Another special case was studied in [R€].

As a nontrivial check of this universal result, we have studied the following ansatz for

membrane in Sch.-AdS7 space:

SO = tu gl =, 52 =Y, = g(y) (367)

This ansatz is just the Sch.-AdS7 part of the M5-brane ansatz eq. (B.39) in the previous
section. The membrane equations of motion for this ansatz give the same constraint on g
as the one obtained from the M5-brane equations, eq. (B.3§).

Using this universal result, one can easily obtained the Mb5-brane configurations cor-
responding to two parallel straight Wilson-Polyakov surfaces in the same higher anti-
symmetric representation from the M2-brane configurations discussed in subsection P.3.

9The other two solutions of df /dx = 0, x = £1, will give us the M5-brane solutions with shrinking 53,
We will not consider these solutions here.

101 the PST formalism, the self-dual condition is eq. () which is from the equations of motion. We
need not to ask Hs to be constructed from a self-dual 3-form hs on the worldvolume of the M5-brane as
what we did in the previous subsections. This is the reason why the Hs3 in this subsection does not have a
part along the directions in M>.
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4. Conclusion and discussions

In this paper, we investigated the thermodynamical behaviors of six-dimension (2,0) field
theory by studying the Wilson-Polyakov surface operators in this theory. We proposed
that these operators should be described by M-theory branes. When these operators are
in low dimensional representations, M2-brane configuration is a good description. While
if these operators are in higher dimensional representation, we suggested that a better
description should be in terms of M5-branes. We used our membrane description to study
the interaction potential between two strings and found that when the distance between
them is small, the potential’s behaviors are asymptotically similar to zero-temperature
results [[[7], while if the distance is large enough the interaction will be screened by the
finite temperature effects. Qualitatively this result is similar to the potential between two
quarks in the four dimensional SYM [BF].

Although the M5-brane solution dual to straight Wilson-Polyakov surfaces in anti-
symmetric representations are not very hard to find. Searching for the Mb5-brane solution
dual to the Wilson-Polyakov surfaces in symmetric representation leads to a quite com-
plicated differential equation. We discussed the existence of the solution and showed that
when the temperature is small enough, the M5-brane solution should exist.

Inspired by our study of M5-branes dual to Wilson-(Polyakov) surfaces, we proved a
universal result on M5-brane solution in a quite generic background My x S* with four-form
flux. Given any membrane solution in this background with worldvolume Y3 completely
embedded in Mz, we get an M5-brane solution with topology 3 x S3 with S3 being in S%.
We hope that this universal result is useful to study the dynamics of M-theory branes in
generic background noticing that supersymmetries play no roles at all here. We hope that
this results will also be useful in probing some other six-dimensional theory which has a
gravity dual.

Quite less is known about the six-dimensional superconformal field theory. This theory
at finite temperature theory is even less studied. As mentioned in the introduction, by
compacting on a two-torus, the six dimensional theory will reduced to four dimensional
N = 4 super Yang-Mills theory at low energy. If we wrapping the Wilson-Polyakov surface
on a suitable circle of this two-torus, we expect to get the Wilson-Polyakov loop. Hope that
this relation will tell us more about the thermodynamics of this six-dimensional theory in
the future.

It would be interesting to study more thoroughly the properties of the six-dimensional
superconformal field theory at the finite temperature. The theory could be in a phase of
perfect fluid, just like the quark-gluon plasma phase of N' = 4 super-Yang-Mills theory
at finite temperature. Then one can use the AdS gravity to study the physics in this

phase [[6].
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A. Various connections

In this appendix, we list various connections appeared in our calculation. For the induced

metric (B.19), its Christoffel symbol has nonvanishing independent components:

Iy,
ry,
Iy
I,
Iy
I

Yy
Uss
%,
T 504

(0%

Gp
ISy

8
r’,

s
F'Y'Y

o
Fﬁ“f

1<L'_2>
2\ f y)’

1
J
/ 2f | 4
)
/
(L+fg?)y
1 1 ! I/
~y +W(_ﬁ +fg'g"),

fg <1 g’)
L+ fg?\y g/

2

—TY i
=TIY, sin” a,

_ S22
= I'Y , sin” asin® 3,

/
_ Ay 1. g
_Fyﬁ_rgv_<__+_>’

Yy g

= —sinacos a,

= —sin? Bsinacosa,

Cos
= I"Y =
Y sina’
= —sin B cos 3,
cos 3
= . Al
sin 3 (A-1)

For the Sch.-AdS7 spacetime, its nonvanishing independent components of spin con-

nection are

_ y_};ay(%), wi: g, for ¢ # 0,2,
-, for i = 4,5,6,
_%, for i = 5,6,
COS
_Rrgin—afmﬁ. (A.2)
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And its nonvanishing independent components of Christoffel symbol are

1 f
g, = - - =
Wy 2f
y 1 f?
Ft:t—aff/—?,
T%m:i, fori=1,---,5,
Ty
1 f
t=—-4+2L
=y ap
1
Iy = ——.
v, ’
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