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1. Introduction

The six-dimensional (2,0) superconformal field theory (SCFT) is mysterious, but also very

interesting. From quantum field theory point of view, it has been known for many years

that there exist no non-trivial unitary superconformal field theory in the spacetime higher

than four dimension, with the six-dimensional one being the only exception. The existence

of a six-dimensional superconformal field theory was first pointed out in Nahm’s beautiful

paper [1]. The result was obtained by studying the representation of superconformal algebra

in various dimensions [1]. The same issue was readdressed in [2] from the point of view of

scaling invariance. The superconformal field theory in six-dimensional spacetime has (2, 0)

supersymmetries and its field content is just of a tensor multiplet which includes a two-form

Bµν with self-dual field strength, 4 fermions and 5 scalars. Because of the self-dual two

form field, there is no Lagrangian formulation of this quite mysterious theory [3], although

this theory is still a local interacting field theory [4]. After compactified on a two-torus, the

six-dimensional field theory gives us the four-dimensional N = 4 super Yang-Mills theory

at the low energy limit [5, 3]. This fact can be used to study the properties of this very

notable four dimensional superconformal field theory, such as S-duality. In string theory,

this six-dimensional SCFT appears in several contexts. It appears when we consider IIB

string theory on a K3 surface with A-D-E type singularity [5] and also appears as the

low energy effective field theory of M5-branes [6, 7]. In the latter case, if we consider N

M5-branes on top of each other, the low energy effective field theory is the six-dimensional

AN−1, (2, 0) SCFT. The five scalars in this field theory describe the fluctuations of the M5-

branes in the transverse directions. Since there is no Lagrangian formulation of the theory,
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people tried to study this theory from other angles. A DLCQ matrix model description

of the six-dimensional superconformal field theory has been suggested [8, 9], during the

development of the BFSS matrix theory [10].

There is another description of M5-branes [11]: they can be described as solutions

of eleven dimensional supergravity, which is the low energy effective theory of M-theory.

Taking the near horizon limit of the supergravity solution gives us AdS7 × S4 background

with 4-form flux filling in S4. This led Maldacena to propose the conjecture that the M-

theory on AdS7 × S4 is dual to the large N limit of the six dimensional superconformal

field theory [12]. This AdS7/CFT6 correspondence is a cousin of much more well-known

AdS5/CFT4 correspondence proposed in the same paper. The weak version of the above

AdS7/CFT6 correspondence states that the large N limit of six-dimensional (2, 0) SCFT

is dual to the eleven-dimensional supergravity on AdS7 ×S4. This correspondence gives us

a new way to study the six-dimensional theory. The chiral primary operators of the SCFT

and the corresponding supergravity modes were studied in [13]. Some correlation functions

of these local operators were computed in [14] from AdS supergravity. These operators

were also studied by using M5-brane action in [15].

Non-local operators play important roles in AdS/CFT correspondence. In the

AdS5/CFT4 correspondence, the Wilson loops in fundamental representation or low di-

mensional representation can be described using the fundamental strings [16, 17]. However,

it turns out that the better descriptions of the BPS Wilson loops in higher dimensional

representations are in terms of D-branes in AdS5 ×S5 [18 – 21] due to dielectric effect [22]:

D3-branes if the Wilson loops being in symmetric representations, or D5-branes if being in

antisymmetric representations. The D-brane description of Wilson-’t Hooft operators was

discussed in [23]. It is remarkable that the D-branes description of the BPS Wilson loops

encodes the information of string interactions.

A quite similar picture appears also in the AdS7/CFT6 correspondence. Due to ex-

istence of the self-dual 2-form potential, there are strings in the field theory minimally

coupled to the 2-form potential. This allows us to define a two-dimensional non-local

operator called Wilson surface. It can be formally defined as [24]:

W0(Σ) = Tr

(

exp i

∫

Σ
B+

)

, (1.1)

where Σ is a surface in the six-dimensional spacetime. The Wilson surface in low di-

mensional representations is dual to a membrane ending on this surface [17, 25]. The

M5-branes dual to straight and spherical half-BPS Wilson surfaces in higher dimensional

representation were found in [26] by solving the covariant equations of motions for M5-

branes1. Analogues to the Wilson loop case, the worldvolume of the M5-brane dual to

the Wilson surface in symmetric representation has topology AdS3 × S3 and is completely

embedded in AdS7. While the worldvolume of the M5-brane corresponding to the Wilson

surface in antisymmetric representation has the same topology but with the S3 part in

S4. The expectation value of the Wilson surfaces in higher dimensional representation

1Similar M5-brane configurations for straight Wilson surface are discussed in [27] in Pasti-Sorokin-Tonin

(PST) formalism [28, 29] as well. The self-dual string soliton in AdS4×S7 spacetime is discussed in [27, 30].
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was computed in [26] from the action of M5-brane, without including the subtle boundary

terms. The operator product expansion of Wilson surface operators is computed using

M-theory branes in [14, 31].

The Wilson loop or Wilson surface operators are not just probes to test AdS/CFT

correspondence and probe the strings or membranes dynamics. They are physical gauge

invariant observables to characterize the underlying theory. For example, in pure non-

Abelian gauge theory at finite temperature, the Wilson loop along temporal path, the

so-called Wilson-Polyakov loop, defined by

P (~x) =
1

N
Tr

(

P exp

(

i

∫ β

0
A0(~x)dt

))

, (1.2)

is the order parameter, characterizing the phase of the theory. Here β = 1/T is the inverse

temperature and P denotes the path ordering. Moreover by considering the correlator

of two parallel Wilson-Polyakov loops one can read out the static potential between two

quarks.

The AdS5/CFT4 correspondence has a finite temperature extension. At finite temper-

ature, The spacetime where the four-dimensional field theory lives can be either S3 × S1

or R3 × S1. Now the time direction becomes a circle with the period being the inverse

of the temperature. According to the AdS/CFT correspondence, this finite temperature

theory is dual to type IIB string theory on the background which is the product of a

Schwarzschild black hole in AdS5 space2 and a 5-sphere. This background comes from the

near-horizon limit of non-extremal black 3-brane solution of the type IIB supergravity. The

Hawking temperature of the black hole corresponds to the temperature of the field theory.

In [32, 33], Witten studied the thermodynamics of this theory on S3 × S1. He showed

that there is confinement-deconfinement phase transition in this theory. This transition is

dual to the Hawking-Page transition [34] in the gravity side. In this case, the AdS/CFT

correspondence tells us that the Wilson-Polyakov loops in fundamental representation can

be described by fundamental strings in Sch.-AdS5 space [35]. Using this description the

interaction potential between two heavy quarks at finite temperature was studied. The

field theory is on R3 × S1 in [35], so there is no confinement-deconfinement phase transi-

tion. One may expect that for the Wilson-Polyakov loop in higher representation, D-branes

rather than fundamental string are more appropriate. In [36], the D5-brane description of

the Wilson-Polyakov loops was proposed. It was also showed in that paper that there is

no D3-brane description. In [37], the correlation function of two Wilson-Polyakov loops,

one in fundamental representation and the other one in the anti-symmetric representation,

was computed.

Similarly the six-dimensional (2, 0) field theory at finite temperature is dual to M-

theory on Sch.-AdS7 × S4. This background can come from the the near horizon limit of

non-extermal black M5-brane solution. The Hawking temperature in the gravity side is

still corresponding to the temperature in the field theory side. The gravity dual of this

finite temperature theory was used in [33] to study the nonsupersymmtric pure Yang-Mills

theory in four dimensions.

2We denote this by Sch.-AdS5.
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In this paper, we would like to study the counterpart of the Wilson-Polyakov loop in

finite temperature six-dimensional (2, 0) field theory in R5×S1 using the M-theory branes.

Like the Wilson surface operator, this counterpart should be a two-dimensional non-local

operator. We also expect that it extends in one spatial direction and one temporal direction.

We can still formally define this operator using eq. (1.1), while now Σ should be a surface

on which the induced metric has signature (1, 1). We call this operator Wilson-Polyakov

surface.

We propose that when this operator is in lower dimensional representations it should

be described by M2-branes ending on this surface. We first find the membrane solution cor-

responding to a straight Wilson-Polyakov surface. We also compute the potential between

two static parallel self-dual strings with infinite length. This involves two Wilosn-Polyakov

surfaces extending in the same two directions of the spacetime. The interaction poten-

tial between these two strings can be obtained from the correlation function of these two

Wilson-Polyakov surfaces. There are two classes of membrane configurations ending on

these two Wilson-Polyakov surfaces: one is of two separated membranes, each of which

ending on one Wilson-Polyakov surface; the other one is a U-shape membrane connecting

these two Wilson-Polyakov surfaces. The interaction potential is determined by the lowest

energy configuration. Denoting the distance between two strings as L and the temperature

as T , we find that when LT ≪ 1, the potential per length goes as 1/L2, similar to the

results at zero temperature [17], and when LT ≫ 1, the interaction potential vanish since

it is screened by the thermal effects.

We also study the M5-brane configurations which should be dual to the Wilson-

Polyakov surfaces in higher dimensional representations. Similar to the discussions at

zero temperature, two classes of M5-branes are studied. The first class of the M5-brane

is completely embedded in Sch.-AdS7, while the second class of M5-brane has a S3 part

embedded in S4. In the first case, we get a very complicated differential equation. The

existence of the solution of this equation is discussed. While in the second case, we obtain

a class of explicit solutions. Among these solutions, we indicate a special one which should

be dual to the Wilson-Polyakov surface in the anti-symmetric representation.

Furthermore, inspired by the M5-brane solution dual to the Wilson-Polyakov surface

in antisymmetric representation and the similar solution at zero temperature in [26], we

consider M-theory on M7 × S4 which can be dual to a quite generic field theory at the

boundary of M7. We obtain a universal result on M5-brane solutions in M7 ×S4. Starting

with a membrane solution whose worldvolume Σ3 is completely embedded in M7, we find

that there is always an M5-brane solution whose topology is Σ3 × S3 with the same Σ3 in

AdS7 and S3 in S4. The similar universal result for D5-brane solutions corresponding to

Wilson loops in anti-symmetric representation was discussed in [38].

The investigation we make here may help us to get a better understanding of the six-

dimensional field theory at finite temperature, the dynamics of the M-theory branes, and

even the dynamics of M-theory itself. For a very good review of the dynamics of M-theory

branes, see [39].

The other part of this paper is organized as the following: In section 2, we will discuss

the M2-brane description of the Wilson-Polykov surface. Firstly in subsection 2.1, the
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M2-brane dual to a straight Wilson-Polykov surface is discussed, then in subsection 2.2,

the interaction between two self-dual strings is studied using M2-brane description. Our

discussions on the M5-brane description is put in section 3. In subsection 3.1, we investigate

the M5-brane which is completely embedded in Sch.-AdS7, in subsection 3.2, we discuss

the M5-brane solution with an S3 part in S4, and in subsection 3.3, we present the universal

result we find. The last section is devoted to conclusion and discussions.

2. Membrane description

As mentioned before, the six-dimensional (2, 0)-field theory at finite temperature is believed

to be dual to the M-theory on Sch.-AdS7 × S4. We also have a 4-form flux which fills in

the 4-sphere. The metric of the background is

ds2 =
R2

y2

(

dy2

f(y)
− f(y)dt2 +

5
∑

i=1

dx2
i

)

+
R2

4
dΩ2

4, (2.1)

with

f(y) = 1 − ǫ6y6. (2.2)

Here dΩ2
4 is the metric of unit 4-sphere. If ζi, i = 1, · · · , 4, are the angular coordinates of

the 4-sphere, then dΩ2
4 can be written as:

dΩ2
4 = dζ2

1 + sin2 ζ1dζ2
2 + sin2 ζ1 sin2 ζ2dz2

3 + sin2 ζ2
1 sin2 ζ2

2 sin2 ζ2
3dζ2

4 . (2.3)

The background 4-form field strength is

H4 =
3R3

8
sin3 ζ1 sin2 ζ2 sin ζ3dζ1 ∧ dζ2 ∧ dζ3 ∧ dζ4. (2.4)

This background can be obtained from the near-horizon limit of non-extremal black M5-

brane solution of the 11-dimensional supergravity. From the AdS/CFT correspondence,

the relation among R, 11-dimensional Plank length lp and the parameter N is

R = (8πN)
1

3 lp. (2.5)

In the large N limit, this six-dimensional field theory at finite temperature should be dual

to the 11-dimensional supergravity in this background. In the metric (2.1), the boundary

field theory is defined at the conformal infinity where y = 0, and the coordinates on the

boundary are t, xi, i = 1, · · · , 5. The topology of the boundary is R5 × S1 with S1 in the

time direction.

Using the standard method, we can get the Hawking temperature TH of the black hole:

TH =
3

2π
ǫ. (2.6)

This Hawking temperature corresponds to the temperature of the field theory.

In this paper, we will use AdS/CFT correspondence to study the Wilson-Polyakov

surface operators in the six-dimensional field theory at finite temperature. In this section,

we will study the M2-brane description of the Wilson-Polyakov surface operators.
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The bosonic part of the membrane action is3 [40]

SM2 = T2

(
∫

d3ξ
√

−detgµν −
∫

C3

)

, (2.7)

where gmn is the induced metric on the membrane, T2 is the tension of M2-brane:

T2 =
1

(2π)2l3p
, (2.8)

and C3 is the pullback of the bulk 3-form gauge potential to the worldvolume of the

membrane4. The membrane equations of motions are:

1√−g
∂m

(√−ggmn∂nXN
)

GMN + gmn∂mXN∂nXP Γ
Q

NP GQM =
1

3!
ǫmnpHMmnp.

(2.9)

Here H is the pullback of the background four-form field strength.

2.1 Membrane description of Wilson-Polyakov surface

In this subsection, we consider a straight Wilson-Polyakov surface in six-dimensional (2, 0)

theory at finite temperature. We let it extend in the t and x2 directions. The dual

membrane configuration is always ending on this Wilson-Polyakov surface. This means

that two worldvolume coordinates of membrane could be identified with t and x2, while

the other coordinate should extend into the bulk.

The simplest membrane configuration is to let it extend only along y direction. We can

easily check that this membrane configuration is the solutions of the membrane equations

of motion. The only non-trivial equation is the one with index M = y, which can be

checked by straightforward calculations. The needed Christoffel symbol of the Sch.-AdS7

space is listed in appendix.

The membrane should be stretched between the boundary (y = 0) and the horizon

(y = y0 ≡ 1/ǫ) because the non-extremal N black M5-branes should be located at the

horizon. Arguments supporting similar result in the Sch.-AdS5 case can be found in [41, 35].

Some of these arguments can be applied here. The action of this membrane is

S = T2R
3T0X2

∫ y0

0

dy

y3

=
2N

π
T0X2

∫ y0

0

dy

y3
. (2.10)

where T0,X2 are the lengths of the t, x2 direction, and in the second line of the above

equation, T2R
3 = 2N/π is used. By introduce a cutoff y = δ near y = 0, we get,

S = −N

π
T0X2

(

1

y2
0

− 1

δ2

)

. (2.11)

3Our notation is: the indices from the beginning(middle) of the alphabet refer to the frame (coordinate)

indices, and the underlined indices refer to the target space ones.
4In this paper, we use the underline indices to denote the target space indices. We also use the underline

to denote the pullback of bulk gauge potential or field strength to the worldvolume of M2-brane or M5-brane.

We hope that this will not produce confusion.
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2.2 The potential between two static strings

It would be interesting to study the potential between two static parallel infinitely-long

strings in this six-dimensional finite-temperature field theory. We let these strings extend

along the x2 direction and put them at x1 = L/2 and x1 = −L/2. To compute this

potential, we need to consider two Wilson-Polyakov surfaces. These surfaces should extend

along the t and x2 direction and be put at x1 = L/2 and x1 = −L/2, respectively. 5

There are two classes of membrane configurations ending on these two Wilson-Polyakov

surfaces. The first is two separated parallel membranes, with each membrane ending on one

of the two Wilson-Polyakov surfaces and extending along y direction to the horizon. These

membranes and their actions have been studied in the last subsection. The second is a

U-shape membrane connecting these two Wilson-Polyakov surfaces. Now we will study this

membrane solution. In the large N limit, the potential between these two static strings will

be determined by the lowest energy membrane configuration among the possible classical

solutions.

The connected membrane solution will only extend in x1, x2, t, y directions of the back-

ground geometry. We choose the coordinates of the worldvolume of the corresponding

membrane to be x1, x2, t, and y is a function of x1 only. Then boundary condition is:

y(−L/2) = y(L/2) = 0.

The induced metric on this membrane is

ds2
ind =

R2

y2

(

−fdt2 + dx2
2 +

(

1 +
y′2

f

)

dx2
1

)

, (2.12)

where y′ is dy/dx1. Then the action of this membrane is,

S = T2

∫

dtdx1dx2
√−g = T2R

3T0X2

∫

√

f + y′2

y3
dx1, (2.13)

where T0,X2 are the lengths of the t, x2 direction.

We can consider the above action as the one of an imaginary particle with x1 plays

the role of time. Since the Lagrangian does not depend on x1 explicitly, the Hamiltonian

in the x1 direction is a constant of motion. So

pyy
′ − L = −T2R

3T0X2f

y3
√

f + y′2
= const. (2.14)

According to the symmetries of this system, at x1 = 0, y should reach its maximum value

ym. So at this point, y′ = 0. Note that we only consider the membrane solution out of the

horizon, so ym ≤ y0. Using the above equation, we have

f(y)

y3
√

f(y) + y′2
=

f(ym)

y3
m

√

f(ym)
=

√

f(ym)

y3
m

, (2.15)

so

y′2 =
(1 − ǫ6y6)(y6

m − y6)

y6(1 − ǫ6y6
m)

. (2.16)

5We choose the same scalar coupling for these two Wilson-Polyakov surfaces, in another word, we choose

the same point at S4 for them.
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Figure 1: The functional relation of LTH and a. One can see that for L < Lmax, there are two

connected membrane solutions, while for L > Lmax, there are no connected membrane solutions.

We can solve this equation to get:

x1 =







∫ ym

y

√

1−ǫ6y6
m

(1−ǫ6z6)(y6
m
−z6)

z3dz, when x1 > 0;

−
∫ ym

y

√

1−ǫ6y6
m

(1−ǫ6z6)(y6
m
−z6)z

3dz, when x1 < 0.
(2.17)

Because of the boundary conditions, we have the following relations between ym and L:

L = 2

∫ ym

0

√

1 − ǫ6y6
m

(1 − ǫ6z6)(y6
m − z6)

z3dz. (2.18)

By introducing a ≡ ǫym, L can be written as:

L =
2a

ǫ

√

1 − a6

∫ 1

0

z3dz
√

(1 − z6)(1 − a6z6)
(2.19)

The above result can be expressed by the hypergeometric function as the following:

L =
2
√

πΓ(2/3)a

ǫΓ(1/6)

√

1 − a6
2F1

(

1

2
,
2

3
,
7

6
, a6

)

. (2.20)

From this, we can also get the dimensionless combination LTH as a function of a:

LTH =
3Γ(2/3)a√
πΓ(1/6)

√

1 − a6
2F1

(

1

2
,
2

3
,
7

6
, a6

)

. (2.21)

This function is plotted in figure 1.

One can see that L has a maximal value Lmax.. For each L less than Lmax., there are

two corresponding a’s: a1(L) and a2(L) with a1(L) < a2(L). So there are two connected

membrane configurations. For L > Lmax., there are no connected membrane solutions.
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0.2 0.4 0.6 0.8 1
a

f

Figure 2: f ≡ Scon.
ren. L

2/(T0X2) as a function of a. One can see that for a < ac, the renormalized

action is negative; while for a > ac, the renormalized action is positive.

For the connected membrane solution, the action is:

Scon.(a) = 2T2R
3T0X2

∫ ym

0

1

y3

√

y6
m(1 − ǫ6y6)

y6
m − y6

dy. (2.22)

As in [12, 35], We should subtract the action of two straight membranes stretched between

the boundary (y = 0) and the horizon (y = y0 ≡ 1/ǫ).6 These membranes extend in

the y, t, x2 directions and are just the disconnected membrane configuration. After the

subtraction, the action is

Scon.
ren.(a) = 2T2R

3T0X2

(

∫ ym

0

1

y3

√

y6
m(1 − ǫ6y6)

y6
m − y6

dy −
∫ y0

0

dy

y3

)

=
4NT0X2

π
ǫ2

[

1

a2

∫ 1

0

(

1

z3

√

1 − a6z6

1 − z6
− 1

z3

)

dz +
1

2

(

1 − 1

a2

)

]

.

=
2NT0X2

π
ǫ2

(

1 +

√
πΓ(−1/3)

3a2Γ(1/6)
2F1

(

− 1

2
,−1

3
,
1

6
, a2

))

(2.23)

The dimensionless combination Scon.
ren.L

2/(T0X2) is the following function of a:

Scon.
ren.L

2/(T0X2) =
8πN

9
(LTH)2

(

1 +

√
πΓ(−1/3)

3a2Γ(1/6)
2F1

(

− 1

2
,−1

3
,
1

6
, a2

))

, (2.24)

where (LTH)2 is given in eq. (2.21). This function is plotted in figure 2.

After eliminating a, we can obtain the functional relation between these two dimen-

sionless combinations: Scon.
ren.L

2/(T0X2) and LTH . This functional relation is plotted in

figure 3.

6This action represents the masses of these two strings.
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Figure 3: The functional relation between f ≡ Scon.
ren. (a)L2/(T0X2) and LTH . The upper dashed

curve is the one corresponding to the membrane configuration with the smaller a, i. e., a2; The

lower solid-dashed curve is the one corresponding to the membrane configuration with the smaller

a, i. e., a1. For L < Lc, the solid curve gives us V L2/X2 as a function of LTH , where V is

the interaction potential per length between these two strings, while for L > Lc, the interaction

potential is zero. We note that this result is at the leading order of large N expansion.

As to the disconnected membrane configuration, this solution always exists for any L.

Due to our substraction prescription, the renormalized action vanishes:

Scon.
ren.(a) = 0. (2.25)

One can see from figure 2 that there is a value ac ≈ 0.692, such that Scon.
ren.(ac) = 0.

One can also see that

Scon.
ren.(a)

{

< 0, when a < ac;

> 0, when a > ac.
(2.26)

We can also find from figure 1 that for any L < Lmax., a2(L) > ac.

So for any given L < Lmax., among the renormalized action of three possible mem-

brane configurations, Scon.
ren.(a1(L)), Scon.

ren.(a2(L)), and Sdis.
ren.(L), the smallest one is7

{

Scon.
ren.(a1(L)), when a ≤ ac;

Sdis.
ren.(L) = 0, when a ≥ ac.

(2.27)

While for any L > Lmax., the only possible membrane configuration is the disconnected

one whose renormalized action vanishes.

So at the leading order of large N expansion, the interaction potential per length

between two infinite strings is:

V

X2
=

{

Scon.
ren.(a1(L))/(X2T0), for L ≤ Lc;

0 for L ≥ Lc.
(2.28)

7Figure 3 tells us that for any L < Lmax, we always have Scon.
ren. (a1(L)) < Scon.

ren. (a2(L)).
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Here Lc (≈ 0.278/TH ) is the value of L such that a1(Lc) = ac. One can see from figure 1 and

figure 2 that Lc < Lmax.. For L < Lc, the functional relation between the dimensionless

combination V L2/X2 and LTH is given by the solid curve in figure 3. Physically, we can

take Lc as the screening length. When L ≤ Lc, the two strings can interact with each

other. And when L ≥ Lc, the two strings are screened by the thermal fluctuation and

de-associate.

Now we further study the potential in the case of LTH ≪ 1. In this case, we have

a ≪ 1. Under this condition, we can expand eq. (2.21) in powers of a,

LTH =
3c

π
a

(

1 − 3

14
a6 − 75

728
a12 + · · ·

)

, (2.29)

where

c ≡
√

πΓ(2
3)

Γ(1
6)

. (2.30)

Then we can get

a = t(1 +
3

14
t6 +

309

728
t12 + · · ·), (2.31)

where t ≡ πLTH/(3c).

From this result and the expansion of eq. (2.24) in powers of a, we get

V

X2
=

N

L2

(

−8c3

π
+

8π

9
(LTH)2 − 32π5

5103c3
(LTH)6 + · · ·

)

. (2.32)

Take TH → 0 in above equation, we arrive at the zero temperature result in [17]:

V/X2 = −8
√

πΓ(2
3)3N

Γ(1
6)3L2

, (2.33)

which is always lower than the finite temperature results.

In summary, the asymptotic behavior of our results at finite temperature is: when

L ≪ 1/TH , V/X2 goes like 1/L2 similar to what happens at zero temperature; while when

L ≫ 1/TH , the potential is zero since the interaction is screened by the finite temperature

effects.

From the above discussion, one can also see that V L2/X2 depends on TH only through

the combination THL, this is due to the underlying conformal symmetry although this

symmetry is broken at finite temperature.

3. M5-brane description

In this section, we turn to study the M5-brane description of the straight Wilson-Polyakov

surface operator. We expect that this description should be a better one when the Wilson-

Polyakov surface is in higher dimensional representations, like what happens in the zero-

temperature case [26].
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Let us first give a brief review of the M5-brane covariant equations of motion in an

eleven-dimensional curved spacetime [42]. We are only interested in the bosonic compo-

nents of the equations, which include the scalar equation and the tensor equation. The

scalar equation takes the form

Gmn∇mEc
n =

Q√−g
ǫm1···m6

(

1

6!
Ha

m1···m6
+

1

(3!)2
Ha

m1m2m3
Hm4m5m6

)

P c
a (3.1)

and the tensor equation is of the form

Gmn∇mHnpq = Q−1(4Y − 2(mY + Y m) + mY m)pq. (3.2)

The various quantities in the above equations of motion are introduced as follows.

There exist a self-dual 3-form field strength hmnp on the M5-brane worldvolume, from

which, one can define

k n
m = hmpqh

npq, (3.3)

Q = 1 − 2

3
Trk2, (3.4)

m q
p = δ q

p − 2k q
p , (3.5)

Hmnp = 4Q−1(1 + 2k) q
mhqnp (3.6)

Note that hmnp is self-dual with respect to worldvolume metric but not Hmnp, which instead

satisfies a nonlinearly self-dual condition and also the Bianchi identity

dH3 = −H4 (3.7)

where H4 is the pull-back of the target space 4-form flux. The induced metric is simply

gmn = Ea
mEb

nηab (3.8)

where

Ea
m = ∂mzmEa

m. (3.9)

Here zm is the target spacetime coordinate, which is a function of worldvolume coordinate

ξ through embedding, and E
a
m is the component of target space vielbein. However, it is

not gmn but instead another tensor

Gmn =

(

1 +
2

3
k2

)

gmn − 4kmn, (3.10)

which appear in (3.1). And the covariant derivative in (3.1) means

∇mEc
n = ∂mEc

n − Γp
mnEc

p + Ea
mEb

nω
c
ab (3.11)

where Γp
mn is the Christoffel symbol with respect to the induced worldvolume metric and

ω
c
ab is the spin connection of the background spacetime. Also one has

P c
a = δc

a − Em
a E c

m . (3.12)
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Moreover, there is a 4-form field strength Ha
1
···a

4
and its Hodge dual 7-form field

strength Ha
1
···a

7
:

H4 = dC3

H7 = dC6 +
1

2
C3 ∧ H4 (3.13)

The frame indices on H4 and H7 in the scalar and the tensor equations have been converted

to worldvolume indices with factors of Ec
m. From them, we can define

Ymn = [4 ⋆ H − 2(m ⋆ H + ⋆Hm) + m ⋆ Hm]mn, (3.14)

where

⋆Hmn =
1

4!
√−g

ǫmnpqrsHpqrs. (3.15)

These two quantities appear in the tensor equation of motion.

These equations of motion can be obtained from the non-chiral action [43, 44] or the

PST (Pasti-Sorokin-Tonin) action [28, 29]. In the non-chiral action, a nonlinear self-dual

condition for H3 should be put by hand instead of coming from the variation of the action.

This is similar to what happens in the case of ten-dimensional type IIB supergravity where

the self-dual condition for 5-form field strength is put by hand. In the PST action, an

auxiliary field is introduced to deal with the self-duality of H3. We postpone a brief

introduction of the PST action to the subsection 3.3, since only there this action is needed.

3.1 M5-brane configuration in Sch.-AdS7

First we consider the M5-brane solution which is completely embedded in the Sch.-AdS7

part of the background metric. In this case, we expect that due to the membrane interaction

in the presence of background 4-form flux, the membrane will polarize to a M5-brane by

blowing up an S3 in the transverse direction. This is really the case for the Wilson surface

operators discussed in [26]. Now we choose the coordinates of Sch.-AdS7 such that the

metric takes the following form:

ds2 =
R2

y2

(

− fdt2 +
dy2

f
+ dx2 + dr2 + r2dΩ2

3

)

. (3.16)

In the case of the straight Wilson-Polyakov surface, let the worldvolume coordinates

of M5-brane be ξi, i = 0, · · · , 5, and the embedding be

ξ0 = t, ξ1 = x, ξ2 = y, r = g(y), (3.17)

ξ3 = α, ξ4 = β, ξ5 = γ, (3.18)

where α, β, γ are the angular coordinates of S3. This embedding is reasonable from the

experience in the study of the Wilson surface operators. The induced metric is then

ds2
ind =

R2

y2
(−fdξ2

0 + dξ2
1 + (f−1 + g′2)dξ2

2 + g2dΩ2
3) (3.19)

=
R2

y2
(−fdt2 + dx2 + (f−1 + g′2)dr2) +

R2g2

y2
(dα2 + sin2 αdβ2 + sin2 α sin2 βdγ2)
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where the prime denotes the derivative with respect to y. Without causing confusion, we

simply let t, x, y, α, β, γ be the coordinates of the M5-brane worldvolume.

There is a self-dual 3-form field strength in the M5-brane worldvolume. Let us assume

it to be

h3 =
a

2
(1 + ⋆ind)

√
det Gdα ∧ dβ ∧ dγ (3.20)

where a could be a function of y and det G is the determinant of the metric of S3. In our

case, we have

h3 =
a

2

(

R

y

)3

(g3 sin2 α sin βdα ∧ dβ ∧ dγ +
√

1 + fg′2dt ∧ dx ∧ dy). (3.21)

Then we can calculate the relevant quantities kmn, Gmn etc. . . It turns out that the

physical 3-form field strength is

H3 = 2a

(

R

y

)3(
√

1 + fg′2

1 + a2
dt ∧ dx ∧ dy +

g3

1 − a2
sin2 α sin βdα ∧ dβ ∧ dγ

)

(3.22)

Since there is no pull-back of bulk 4-form field strength on the M5-brane worldvolume,

we have dH3 = 0, which gives the constraint

a

1 − a2

g3

y3
= constant (3.23)

The equation of motion on the tensor Hnpq, in this case, is

Gmn∇mHnpq = 0. (3.24)

Here ∇m is the covariant derivative with respect to the induced metric. We list the detailed

Levi-Civita connection in appendix. It is somehow surprising that the tensor equation give

the same constraint (3.23). It is remarkable that (3.23) is independent of the form of f .

For the scalar equation of motion, it is more involved. In our case, we have

E0
t =

R

y

√

f, E1
x =

R

y
, E2

y =
R

y
√

f
, E3

y =
R

y
g′,

E4
α =

Rg

y
, E5

β =
Rg sin α

y
, E6

γ =
Rg sin α sinβ

y
, (3.25)

where we have set the veilbein of AdS7 part of the target spacetime as

θ̂0 =
R

y

√

fdt, θ̂1 =
R

y
dx, θ̂2 =

R

y
√

f
dy, θ̂3 =

R

y
dr,

θ̂4 =
Rr

y
dα, θ̂5 =

Rr sin α

y
dβ, θ̂6 =

Rr sin α sinβ

y
dγ. (3.26)

The corresponding spin connection could be found in appendix. The straightforward cal-

culation shows that

Gmn∇mEc
n = 0, except c = 2 or 3. (3.27)
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The nontrivial components come from c = 2 or 3. The right hand side of the scalar equation

of motion consists of the matrix P
c
a = δ

c
a − Em

a E c
m , which has nonvanishing components

P c
a =

(

fg′2

1+fg′2
−

√
fg′

1+fg′2

−
√

fg′

1+fg′2
1

1+fg′2

)

. (3.28)

where a, c take values 2, 3.

For the background flux, we have a dual 7-form field strength in AdS7 part,

H01···6 =
6

R
(3.29)

Note that our convention is a little different from the literature by a factor 2 since we have

rescaled the radius of AdS7. On the right hand side of the scalar equation, only 7-form

field strength contributes since the M5-brane worldvolume is embedded simply into AdS7

and there is no induced 4-form field strength on it.

It turns out that the nontrivial components c = 2 and 3 of the scalar equation of

motion give the same constraint:

6(1 − a4)
√

1 + fg′2
= (1 + a2)2

{

3fg′

1 + fg′2
− 1

(1 + fg′2)2

(

yf ′g′

2
(2 + fg′2) + fyg′′

)}

+3(1 − a2)2
1

1 + fg′2

(

fg′ +
y

g

)

. (3.30)

When one takes f = 1 and g = κ−1y, the above equation is just the one for the Wilson

surface operator in the symmetric representation, which was discussed in [26]. Generically

even when one takes f = 1, the equation (3.30) is quite hard to solve analytically. When one

consider the Sch.-AdS7 with a nonconstant f , even the existence of the solution is not an

easy problem. In [36], it was showed that there are no D3-brane solutions with finite total

action dual to Wilson-Polyakov loops in four dimensional N = 4 super Yang-Mills theory

at finite temperature. In the case at hand, we can not directly use their argument since the

total action of M5-brane is still not well-defined due to the subtlety of the boundary terms

and the conformal anomalies [45]. Here we would like to just discuss the existence of the

solution of the above differential equation. Let us impose the following initial condition:

g(0) = c1, g′(0) = c2. (3.31)

For the case of c1 = 0, we have mentioned that this initial value problem has a solution

g = κ−1y when ǫ = 0. This will guarantee that for small enough (positive) ǫ, the above

initial value problem will have a solution in a finite interval [0, y0(ǫ)]. In another word,

when the temperature is low enough, the M5-brane solution dual to Wilson surface in sym-

metric representation in zero-temperature theory will only be deformed, not be destroyed.

However, for the case of c1 6= 0, we find that this initial value problem has no solutions.8

8We would like to thank Antonio Ambrosetti and Jiayu Li for discussions and helps on the study of this

ordinary differential equation.
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3.2 M5-brane configuration in Sch.-AdS7 × S4

Now let us consider another possibility. We consider the M5-brane solution with topology

Σ3 × S3. Now Σ3 will be in Sch.-AdS7 and S3 in S4. Let the worldvolume coordinates of

M5-branes be ξi, i = 0, · · · 5 and the embedding be

ξ0 = t, ξ1 = x, ξ2 = y, r = g(y)

ξ3 = ζ2, ξ4 = ζ3, ξ5 = ζ4, ζ1 = ζ0 (3.32)

where ζi are the angular coordinates of S4. Here we let ζ1 be fixed at a constant ζ0. The

induced metric is

ds2
ind =

R2

y2
(−fdt2 + dx2 + (f−1 + g′2)dy2)

+
R2 sin2 ζ0

4
(dζ2

2 + sin2 ζ2dζ2
3 + sin2 ζ2 sin2 ζ3dζ2

4 ). (3.33)

In this case, we take the self-dual 3-form field strength on the M5-brane worldvolume

to be

h3 =
1

2
aR3

(

√

1 + fg′2

y3
dt ∧ dx ∧ dy +

sin3 ζ0

8
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

(3.34)

where a could be a function of y.

Similar to the above cases, we can get kmn, k2 = 3
2a4 and Q = 1−a4. And the physical

3-form is

H3 = 2aR3

(

√

1 + fg′2

(1 + a2)y3
dt ∧ dx ∧ dy +

sin3 ζ0

8(1 − a2)
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

. (3.35)

The condition that dH3 = 0 requires that a is a constant.

It is straightforward to check if it is possible and under what condition if possible that

the above ansatz satisfy the equations of motion. Since a is a constant, the tensor equation

is satisfied. And from the scalar equation, for the trivial embedding in AdS7 r = constant

and the nontrivial embedding in S4, the discussion is parallel to the one in [26], we get

a =
±1 + sin ζ0

cos ζ0
. (3.36)

As for the nontrivial embedding in Sch.-AdS7 part, it is somehow interesting. Firstly note

that the R.H.S of scalar equation is always vanishing in this case due to the pull-back of

the 4-form or dual 7-form field strength is zero. At the end, we have the following equation:

3fg′

1 + fg′2
− 1

(1 + fg′2)2

(

yf ′g′

2

(

2 + fg′2
)

+ fyg′′
)

= 0, (3.37)

which can be cast into the form

g′′ +
f ′g′

2f
(2 + fg′2) − 3

y
g′(1 + fg′2) = 0. (3.38)
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Obviously when g is a constant, which means that the embedding in AdS7 is trivial, the

above equation is satisfied, no matter what f is. This means that in this case we always

have a M5-solution once (3.36) holds, just as we expected. We propose here that the

solution with g = 0 should be dual to a straight Wilson-Polyakov surface operator in

higher dimensional antisymmetric representation.

Certainly it would be interesting to solve eq. (3.38). It looks simpler than the one for

the symmetric case, but still hard to solve. For example, let f = 1, which reduce to the

background without the Schwarzschild blackhole. The equation is reduced to

g′′ − 3

y
g′(1 + g′2) = 0. (3.39)

It could be solved exactly:

g = c1 −
1

2
c
−1/3
0

(

(3−1/4 − 31/4)F

(

β,
1 +

√
3

2
√

2

)

+ 2
4
√

3E

(

β,
1 +

√
3

2
√

2

)

− 2
√

1 − c2
0y

6

√
3 + 1 − c

2/3
0 y2

)

, (3.40)

where c0 and c1 are two integral constants with c0 being non-negative, β is defined as

β = arccos

√
3 − 1 + c

2/3
0 y2

√
3 + 1 − c

2/3
0 y2

, (3.41)

and F and E are elliptic integrals of the first and second kind, respectively. In this solution

y can only take the value between 0 and c
−1/3
0 . Obviously g being a constant is a trivial

embedding. And the special one with g = 0 corresponds to the Wilson surface operator in

anti-symmetric representation. However it is remarkable that for the pure AdS7 ×S4 case,

there actually exist a two-parameter class of M5-brane configuration, characterized by the

integral constant c0, c1. The one with g being constant is the one with half supersymmetries.

However, with f not being a constant, the equation (3.38) is hard to solve.

The key point in the above discussion is that the embeddings in AdS7 and S4 are

independent.

3.3 A universal result

As a generalization of the M5-brane solutions corresponding to Wilson(-Polyakov) surfaces

in antisymmetric representation found in [26] and the previous subsection, we will prove a

universal result on a class of M5-brane solutions in this subsection. We consider M-theory

on M7 × S4 with four form fluxes filling in S4. We assume that this background is the

solution of the eleven dimensional supegravity and a good background of M-theory. If M-

theory on this background is dual to a field theory on the boundary of M7, we expect this

universal result is useful to study the Wilson(-Polyakov) surface operators in the field theory

on the boundary. We need not to require that this background has any supersymmetries.

AdS7 and Sch.-AdS7 are two special examples of M7.
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The background metric on M7 × S4 is

ds2
M7×S4 = ds2

M7
+

R2

4

(

dζ2
1 + sin2 ζ1dζ2

2 + sin2 ζ1 sin2 ζ2dz2
3 + sin2 ζ2

1 sin2 ζ2
2 sin2 ζ2

3dζ2
4

)

.

(3.42)

We assume that there is a membrane solution in this background and the worldvolume

of this membrane, Σ3, is completely embedded in M7 part of the background geometry.

Locally we can always choose the coordinates of the worldvolume such that the induced

metric takes the following diagonal form:

ds2
Σ3

= gξ0ξ0dξ0dξ0 + gξ1ξ1dξ1dξ1 + gξ2ξ2dξ2dξ2. (3.43)

This worldvolume is a three-dimensional submanifold of M7 with minimal volume.

Now, we plan to show that from this membrane solution, we can obtained a M5-brane

solution whose worldvolume has topology Σ3 × S̃3 with the same Σ3 in M7 and S̃3 in S4.

Since here M7 is quite generic, it is not easy to search for the M5-brane solution using

the covariant M5-brane equations of motion. So in our discussions here we will use the

PST (Pasti-Sorokin-Tonin) action [28, 29] of the M5-brane as in [27]. The bosonic part of

the PST action is the following:

SPST = T5

∫

d6x

(

√

−det(gmn + iH̃mn) −
√−g

4
H̃mnHmn

)

− T5

∫

Z6, (3.44)

where

Z6 = C6 −
1

2
C3 ∧ H3, (3.45)

and

T5 =
1

(2π)5l6p
, (3.46)

is the tension of the M5-brane. In the above action,

H̃mn = (∗H)mnpvp, (3.47)

Hmn = Hmnpvp. (3.48)

Hmnp is the 3-form field strength in the worldvolume of the M5-brane:

H3 = dA2 − C3, (3.49)

and vp is defined by introducing an auxiliary field b:

vp =
∂pb√

gmn∂mb∂nb
. (3.50)

This auxiliary scalar field b can be an arbitrary scalar with nonzero gradient. We have

made the choice that the gradient of b is spacelike. The equation of motion of the auxiliary

field b is not independent. It can be obtained as a consequence of the equation of motion of

the 2-form gauge potential, which takes the following form after appropriate gauge fixing:

Hmn = Vmn, (3.51)
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where

Vmn = − 2√−g

δ
√

− det(gmn + iH̃mn)

δH̃mn
. (3.52)

The relation (3.51) can be understood as a generalized non-linear self-dual condition.

The ansatz of our M5-brane solution is the following: as mentioned before, we take

the Σ3 part of the worldvolume to be the same as the worldvolume of the above membrane

solution. The coordinates of this part are still chosen to be ξ0, ξ1, ξ2. As to the S̃3 part,

we choose the worldvolume coordinates to be

ξ3 = ζ2, ξ4 = ζ3, ξ5 = ζ4, (3.53)

and we let ζ1 to be fixed at ζ0. We also make the following ansatz for dA2:

dA2 =
R3

8
ã sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4, (3.54)

here ã is a constant. We choose the background three form gauge potential to be

C3 =
R3

8
(3 cos ζ1 − cos3 ζ1) sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4. (3.55)

so

C3 =
R3

8
(3 cos ζ0 − cos3 ζ0) sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4. (3.56)

From now on, we will define d(ζ0) as

d(ζ0) ≡ 3 cos ζ0 − cos3 ζ0, (3.57)

then

H3 =
R3

8
(ã − d(ζ0)) sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4. (3.58)

The hodge dual of H3 is

∗H =

√

−detgΣ3
(ã − d(ζ0))

sin3 ζ0
dξ0 ∧ dξ1 ∧ dξ2. (3.59)

We choose the auxiliary scalar field b to be ξ2, then the only nonzero component of vp is

vξ2 =
√

gξ2ξ2 . So the only nonzero independent compoent of H̃mn is

H̃ξ0ξ1 =
√

−detgΣ3
gξ2ξ2

ã − d(ζ0)

sin3 ζ0
. (3.60)

Then the first term of the PST action is:

T5

∫

d6ξ

√

−det(g + iH̃) =
T5R

3

8

∫

d6ξ
√

−detgΣ3

× sin2 ζ2 sin ζ3

√

sin6 ζ0 + (ã − d(ζ0))2. (3.61)
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It is easy to see that the second and the third terms of the PST action vanish for our

ansatz. So the PST action for our ansatz is:

SPST =
T5R

3

8

∫

d6ξ
√

−detgΣ3
sin2 ζ2 sin ζ3

√

sin6 ζ0 + (a − d(ζ0))2. (3.62)

We need to find the value of ζ0 such that the action take the minimal value. Define

x ≡ cos ζ0, (3.63)

and

f = sin6 ζ0 + (a − d(ζ0))2 = (1 − x2)3 + (ã − 3x + x3)2. (3.64)

From df
dx = 0, we get x = ã/2.9 Then

H = −R3

8
cos ζ0 sin2 ζ0 sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4. (3.65)

Now the action of M5-brane equal to the volume of Σ3 times a constant. Then Σ3 should

be a 3-dimensional submanifold with minimal volume. It is guaranteed by the fact that

Σ3 is the worldvolume of a M2-brane whose configuration is the solution of the membrane

equations of motion. So our ansatz does satisfy the M5-brane equations of motion when ã

and ζ0 satisfy

cos ζ0 =
ã

2
. (3.66)

Using eqs. (3.35) and (3.36), one can find that the S̃3 part of H3 of the M5-brane

solution in the previous subsection is the same as the obtained H3 in this section. This

show that that M5-brane solution is a special case of the universal result of this section.10

Another special case was studied in [26].

As a nontrivial check of this universal result, we have studied the following ansatz for

membrane in Sch.-AdS7 space:

ξ0 = t, ξ1 = x, ξ2 = y, r = g(y). (3.67)

This ansatz is just the Sch.-AdS7 part of the M5-brane ansatz eq. (3.32) in the previous

section. The membrane equations of motion for this ansatz give the same constraint on g

as the one obtained from the M5-brane equations, eq. (3.38).

Using this universal result, one can easily obtained the M5-brane configurations cor-

responding to two parallel straight Wilson-Polyakov surfaces in the same higher anti-

symmetric representation from the M2-brane configurations discussed in subsection 2.2.

9The other two solutions of df/dx = 0, x = ±1, will give us the M5-brane solutions with shrinking S̃3.

We will not consider these solutions here.
10In the PST formalism, the self-dual condition is eq. (3.51) which is from the equations of motion. We

need not to ask H3 to be constructed from a self-dual 3-form h3 on the worldvolume of the M5-brane as

what we did in the previous subsections. This is the reason why the H3 in this subsection does not have a

part along the directions in M7.
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4. Conclusion and discussions

In this paper, we investigated the thermodynamical behaviors of six-dimension (2, 0) field

theory by studying the Wilson-Polyakov surface operators in this theory. We proposed

that these operators should be described by M-theory branes. When these operators are

in low dimensional representations, M2-brane configuration is a good description. While

if these operators are in higher dimensional representation, we suggested that a better

description should be in terms of M5-branes. We used our membrane description to study

the interaction potential between two strings and found that when the distance between

them is small, the potential’s behaviors are asymptotically similar to zero-temperature

results [17], while if the distance is large enough the interaction will be screened by the

finite temperature effects. Qualitatively this result is similar to the potential between two

quarks in the four dimensional SYM [35].

Although the M5-brane solution dual to straight Wilson-Polyakov surfaces in anti-

symmetric representations are not very hard to find. Searching for the M5-brane solution

dual to the Wilson-Polyakov surfaces in symmetric representation leads to a quite com-

plicated differential equation. We discussed the existence of the solution and showed that

when the temperature is small enough, the M5-brane solution should exist.

Inspired by our study of M5-branes dual to Wilson-(Polyakov) surfaces, we proved a

universal result on M5-brane solution in a quite generic background M7×S4 with four-form

flux. Given any membrane solution in this background with worldvolume Σ3 completely

embedded in M7, we get an M5-brane solution with topology Σ3 × S̃3 with S̃3 being in S4.

We hope that this universal result is useful to study the dynamics of M-theory branes in

generic background noticing that supersymmetries play no roles at all here. We hope that

this results will also be useful in probing some other six-dimensional theory which has a

gravity dual.

Quite less is known about the six-dimensional superconformal field theory. This theory

at finite temperature theory is even less studied. As mentioned in the introduction, by

compacting on a two-torus, the six dimensional theory will reduced to four dimensional

N = 4 super Yang-Mills theory at low energy. If we wrapping the Wilson-Polyakov surface

on a suitable circle of this two-torus, we expect to get the Wilson-Polyakov loop. Hope that

this relation will tell us more about the thermodynamics of this six-dimensional theory in

the future.

It would be interesting to study more thoroughly the properties of the six-dimensional

superconformal field theory at the finite temperature. The theory could be in a phase of

perfect fluid, just like the quark-gluon plasma phase of N = 4 super-Yang-Mills theory

at finite temperature. Then one can use the AdS gravity to study the physics in this

phase [46].
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A. Various connections

In this appendix, we list various connections appeared in our calculation. For the induced

metric (3.19), its Christoffel symbol has nonvanishing independent components:

Γt
yt =

1

2

(

f ′

f
− 2

y

)

,

Γx
yx = −1

y
,

Γy
tt =

f

2(1 + fg′2)

(

− 2f

y
+ f ′

)

,

Γy
xx =

f

(1 + fg′2)y
,

Γy
yy = −1

y
+

1

1 + fg′2
(− f ′

2f
+ fg′g′′),

Γy
αα =

fg2

1 + fg′2

(

1

y
− g′

g

)

,

Γy
ββ = Γy

αα sin2 α,

Γy
γγ = Γy

αα sin2 α sin2 β,

Γα
yα = Γβ

yβ = Γγ
yγ =

(

− 1

y
+

g′

g

)

,

Γα
ββ = − sin α cos α,

Γα
γγ = − sin2 β sin α cos α,

Γβ
αβ = Γγ

αγ =
cos α

sin α
,

Γβ
γγ = − sin β cos β,

Γγ
βγ =

cos β

sin β
. (A.1)

For the Sch.-AdS7 spacetime, its nonvanishing independent components of spin con-

nection are

ω
2
00 =

y2

R
∂y

(√
f

y

)

, ω
2
ii =

√
f

R
, for i 6= 0, 2,

ω
3
ii = − y

Rr
, for i = 4, 5, 6,

ω
4
ii = − y cos α

Rr sin α
, for i = 5, 6,

ω
5
66 = − y cos β

Rr sin α sin β
. (A.2)
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And its nonvanishing independent components of Christoffel symbol are

Γ
y
yy = −1

y
− f ′

2f
,

Γ
y
tt =

1

2
ff ′ − f2

y
,

Γ
y
x

i
x

i
=

f

y
, for i = 1, · · · , 5,

Γ
t
yt = −1

y
+

f ′

2f
,

Γ
x

i

yx
i

= −1

y
. (A.3)
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